Similarity enhacement in Time-Aware Recommender Systems

نویسندگان

  • Roee Anuar
  • Yossi Buckchin
  • Oded Maimon
چکیده

Time-aware recommender systems (TARS) are systems that take into account a time factor the age of the user data. There are three approaches for using a time factor: (1) the user data may be given different weights by their age, (2) it may be treated as a step in a biological process and (3) it may be compared in different time frames to find a significant pattern. This research deals with the latter approach. When dividing the data into several time frames, matching users becomes more difficult similarity between users that was once identified in the total time frame may disappear when trying to match between them in smaller time frames. The user matching problem is largely affected by the sparsity problem, which is well known in the recommender system literature. Sparsity occurs where the actual interactions between users and data items is much smaller in comparison to the entire collection of possible interactions. The sparsity grows as the data is split into several time frames for comparison. As sparsity grows, matching similar users in different time frames becomes harder, increasing the need for finding relevant neighboring users. Our research suggests a flexible solution for dealing with the similarity limitation of current methods. To overcome the similarity problem, we suggest dividing items into multiple features. Using these features we extract several user interests, which can be compared among users. This comparison results in more user matches than in current TARS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

سیستم پیشنهاد دهنده زمینه‌آگاه برای انتخاب گوشی تلفن همراه با ترکیب روش‌های تصمیم‌گیری جبرانی و غیرجبرانی

Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...

متن کامل

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010